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Recurrent 3D Hand Pose Estimation Using
Cascaded Pose-guided 3D Alignments

Xiaoming Deng, Dexin Zuo, Yinda Zhang, Zhaopeng Cui, Jian Cheng, Ping Tan,
Liang Chang, Marc Pollefeys, Sean Fanello, Hongan Wang

Abstract—3D hand pose estimation is a challenging problem in computer vision due to the high degrees-of-freedom of hand
articulated motion space and large viewpoint variation. As a consequence, similar poses observed from multiple views can be
dramatically different. In order to deal with this issue, view-independent features are required to achieve state-of-the-art performance.
In this paper, we investigate the impact of view-independent features on 3D hand pose estimation from a single depth image, and
propose a novel recurrent neural network for 3D hand pose estimation, in which a cascaded 3D pose-guided alignment strategy is
designed for view-independent feature extraction and a recurrent hand pose module is designed for modeling the dependencies among
sequential aligned features for 3D hand pose estimation. In particular, our cascaded pose-guided 3D alignments are performed in 3D
space in a coarse-to-fine fashion. First, hand joints are predicted and globally transformed into a canonical reference frame; Second,
the palm of the hand is detected and aligned; Third, local transformations are applied to the fingers to refine the final predictions. The
proposed recurrent hand pose module for aligned 3D representation can extract recurrent pose-aware features and iteratively refines
the estimated hand pose. Our recurrent module could be utilized for both single-view estimation and sequence-based estimation with
3D hand pose tracking. Experiments show that our method improves the state-of-the-art by a large margin on popular benchmarks with

the simple yet efficient alignment and network architectures.

Index Terms—Hand Pose Estimation, Alignment, Cascaded Neural Networks, Recurrent Model.

1 INTRODUCTION

AND pose estimation is one of the fundamental prob-
lems in computer vision and computer graphics, and
has many applications in human-computer interactions and
augmented reality [1]. Compared to color images, depth im-
ages are more suitable to solve the 3D hand pose estimation
task due to two main advantages: 1) They encode 2.5D
information of the hand, thus facilitate the segmentation
between foreground and background. 2) Depth images are
generally less sensitive to ambient light, especially in indoor
scenes, which leads to reliable imaging of human hand and
thus more accurate hand pose estimation performance.
Existing hand pose estimation work either uses model-
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based method [2], [3] by fitting hand parametric models
[4], [5], or learning-based methods. Early learning-based
methods mainly use random forest algorithms to regress
hand joint positions [6], [7], [8]. Recently, deep learning
based hand pose estimation methods have achieved su-
perior performance and dominated the top of the bench-
marks. However, accurate 3D hand pose estimation is still
challenging due to the high degrees-of-freedom of hand
articulated motion space. Moreover, similar poses observed
from different viewpoints can be dramatically different,
which causes learning 3D hand pose to be hard, or requires
a lot of training data.

Aligning data in 3D space, is one of the most effective
way to reduce the variations of input data due to different
viewpoints or different articulated hand motions and thus
reduce the burden of the machine learning model. A global
rigid transformation is generally used to bring the observed
3D hands into a canonical coordinate system, e.g. fingers up,
and therefore the joint locations can be estimated indepen-
dently with the arbitrary orientations [9]. More specifically,
this idea has been extensively studied in the field of 3D
hand pose estimation from depth images. Sun et al. [8]
proposed to calculate features from the 2D input depth
image under different coordinate systems built on palm and
fingers, and train a random forest to predict the residual of
the pose in cascade. Ye ef al. [10] extended the similar ideas
using deep neural network, in which in-plane rotations are
applied iteratively to the input depth, and local features at
each joint are cropped by an attention model to predict pose
residual. These efforts are tried to make the input data and
the extracted features invariant to the camera pose, which
will make the training process relatively easier. Despite their
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Fig. 1. lllustration of our cascaded pose-guided 3D alignments and feature extraction in 3D space. Although the point clouds of the same hand pose
from different viewpoints (row 1 vs. row 2) and the point clouds of different hand poses (row 1 and row 2 vs. row 3) are quite different, they become
similar for palm and finger parts using palm alignment and finger alignment (see col 3 and col 7), respectively. The hand shapes in the fourth and

sixth column are only used for a clear illustration of alignment transformations.

success, these works do not achieve the full 3D hand pose
estimation pipeline in the 3D space — either the alignment
transformation is restricted in 2D image plane [8], [10] or the
feature is calculated from the perspective 2D depth image
[11], [12], and lead to unsatisfactory pose estimation results.

Among the deep neural network estimation models, the
cascaded models that adopt multiple sequential stages for
coarse-to-fine estimation have been successfully applied in
hand pose estimation (e.g. [8], [10], [13]). However, these
models only use the features of the current iteration and
may overlook the features of the previous cascaded it-
erations. Since the cascaded hand pose estimation itera-
tively refines hand skeleton joints, there could be strong
correlation between the features from different iterations.
Therefore, if the features of the neighboring cascaded hand
pose modules are fused during the training of the current
cascaded module, the hand pose estimation performance
could be possibly further improved.

To address these issues, we firstly investigate the impact
of view-independent features for 3D hand pose estimation
from a single depth image (Fig. 1). We demonstrate that it is
crucial to perform both data alignment and feature extraction
in 3D space. This enables view-independent features, which
greatly boost the accuracy for hand pose estimation. The
input depth image is first converted to a 3D point cloud
representation, and several 3D transformations guided by
the initial hand pose (i.e. pose-guided 3D alignment) are
obtained to align the input point clouds to the coordinate
systems of the palm and each finger. As shown in Fig. 1,
although the point clouds of different hand poses are quite
different, they become similar for palm and finger parts
using palm alignment and finger alignment, respectively.

Features are then extracted from the transformed 3D point
clouds to make it fully invariant to the camera pose. Adopt-
ing pose-guided 3D alignment directly on 3D point clouds
produces more intuitive and geometrically reasonable input
that fixes the issue due to the different hand viewpoints
and facilitates the hand pose estimation. Inspired by Sun et
al. [8], we conduct both global and local alignments in a
cascaded way. In particular, we design cascaded pose-guided
3D alignments that are performed in 3D space in a coarse-
to-fine fashion. By using the alignments of palm stage and
finger stage, we obtain different transformations for palm
and each finger (i.e. in total 6) to transform the relevant
point clouds for each part to a canonical coordinate system
and then extract the view invariant features for each part.
Our global and local alignments can address the issue of
high degree of freedom in hand pose space in a divide
and conquer strategy. We design a new recurrent hand pose
module for aligned 3D point clouds to generate recurrent
pose-aware features and further enhance the performance
of our method. Our recurrent hand pose module could
be utilized for both single-view estimation and sequence-
based estimation with 3D hand pose tracking. Moreover,
our method can be generalized to different 3D point cloud
network backbones or other 3D representations such as 3D
volume (see the supplementary document).
Our contributions can be summarized as follows:

1) To be best of our knowledge, we propose the first
pose-guided data alignment of 3D point clouds
for 3D hand pose estimation. With the proposed
alignment, we design a 3D cascaded deep learning
framework, which learns fully view-independent
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features by performing cascaded pose-guided data
alignment and feature extraction in 3D progres-
sively via both global and local alignments;

2) We present a new recurrent hand pose module
for aligned 3D representation that can extract re-
current pose-aware feature and iteratively refine
the estimated hand pose. Besides the aligned 3D
point clouds, the recurrent module extracts recur-
rent pose-aware features by taking as input the
features from previous iterations via the long short
term memory (LSTM) cells, which model the de-
pendency of features in different iterations of refine-
ment. The proposed recurrent module could be uti-
lized for both single-view estimation and sequence-
based estimation with 3D hand pose tracking;

3) Extensive experiments demonstrate that our
method improves the state-of-the-art (SoTA) by a
large margin on the main hand pose benchmark
datasets as well as excellent efficiency.

2 RELATED WORKS

Our method is related to model-based hand pose estimation
methods, learning-based hand pose estimation methods,
data alignment and cascaded models.

2.1 Model-based Hand Pose Estimation

Model-based hand pose methods assume predefined 3D
hand deformable models, and they try to fit observed depth
maps by minimizing a nonlinear function over the hand
poses [1]. They are mostly based on slow, but accurate local
optimization such as particle swarm optimization (PSO) and
require good initialization [14]. A few methods [2], [3], [4]
overcome issues with slow optimization, yet these methods
still suffer in presence of strong self occlusions and poor
re-initialization. The widely used 3D hand models consist
of a rigged polygonal mesh model [15], a statistical hand
shape model named MANO [5] and a mixture of spheres
[16]. In these methods, an additional subject calibration that
personalizes the hand model can improve the overall hand
pose prediction accuracy [17]. However, high-fidelity hand
shape modeling itself is challenging [15], [18], [19].

2.2 Learning-based Hand Pose Estimation

With the recent availability of large scale training data, hand
pose can be formalized as machine learning problem using
random forest [6], [7], [8], 2D CNN [11], [13], [20], [21], [22],
[23], [24] and 3D CNN [25], [26], [27], [28].

In 2D CNN based methods, the hand skeleton joints are
usually modeled as a heatmap in the depth image obtained
with a trained classifier [20], [21], or directly via regression
[11], [13], [22], [23], [24]. These methods use 2D CNN to
extract 2D features. Due to the domain difference between
2D features and 3D joints, they struggle to learn an accurate
mapping from 2D features to 3D joint locations [26].

3D CNN based methods directly operate in 3D space
such as voxels or point cloud and extract 3D features, which
have been proved to be effective for hand pose estimation
[25], [26], [27]. Deng et al. [25] and Ge et al. [26] regress hand
joints from a 3D volume via the truncated signed distance

function (TSDF). Moon et al. [27] estimate hand joints by
3D heatmaps via classification. This method has ranked first
in the Hands 2017 Challenge [29], proving once again the
importance of 3D representations. Recently, several works
use PointNet [30], [31] or other point cloud network such as
PEL [32] to estimate hand pose. Ge et al. [28] estimate hand
pose on raw point clouds by a hierarchical network. Ge et
al. [33] propose a method which estimates hand pose with
3D heatmaps.

Differently from previous work, we propose a new pose-
guided alignment of 3D representation from coarse to fine.
Compared to HandPointNet [28] that uses PCA to align the
input point cloud and leads to fixed alignment even with
multiple PCA alignments, our pose-guided 3D alignment
iteratively aligns the input point cloud with the estimated
3D pose in the previous stage and converges to a proper
canonical coordinate, and can leverage an effective recurrent
architecture to refine the hand pose.

2.3 Data Alignment for Hand Pose Estimation

Data alignment is an effective pre-process step for hand
pose estimation, which can reduce the viewpoint variation
and enhance hand pose estimation performance. Previous
methods adopt global 2D rigid transformations [9] or a PCA
model [33] for alignment.

Compared to previous alignments such as principal
component analysis (PCA) in [28] or learning-based align-
ment in 3D space [30], [31], [34], we align the input data
with estimated hand pose learned from supervision, while
the others rely a canonical coordinate that is vaguely de-
fined from distribution of the raw input data. As a result,
our alignment benefits from the initial learning stage, and
is more interpretable and robust against hand viewpoint
diversity in the input. Moreover, we apply this pose-guided
alignment in multiple scales (from global structure to local
details), and use the alignment for recurrent hand pose
refinement, which is trained in an end-to-end manner and
is found to be effective all the time.

projection

— —
3D 2D

alignment alignment

%

3D representatioﬁ 3D aligned ) 2D representation 2D aligned

Fig. 2. lllustration of different data representations and alignments
(2D/3D).

2.4 Cascaded Models for Hand Pose Estimation

Cascaded models have been successfully applied in hand
pose estimation [8], [10], [13], [35]. Sun ef al. [8] propose
to use hierarchical data alignment that estimates partial
hand poses by extracting rotation invariant features from 2D
depth images. Ye et al. [10] apply 2D transformation on the
input depth map and employ spatial attention mechanism
to estimate residual of pose error in cascade. Du et al. [36]
propose a multi-task hand pose regression network named
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Fig. 3. lllustration of our recurrent hand pose network using cascaded pose-guided alignments. We first convert the input hand foreground depth
to point cloud. Then we adopt multiple recurrent iterations to estimate the 3D hand pose. Specifically, we introduce several LSTM modules among
multiple palm stages to refine the hand pose. In each recurrent iteration, we adopt a multi-stage network (i.e. global, palm and finger stages) to
predict hand joints by iterative pose regression and cascaded pose-guided 3D alignment, and we adopt the hand pose of the previous iteration to
align the input point cloud of the current iteration. “PointNet Encoder” denotes the network before the last multi-layer perception (MLP) of PointNet++.
“Ao,4” is the transformation via the estimated hand pose Py, 410141 Of the global stage in the initial recurrent iteration, “A,,,” are the transformations
to align each finger via the estimated hand pose of the palm stage P ,q:m in the t-th recurrent iteration, and “A” is the transformation via the
composited hand pose “P;” of the palm stage and the finger stage in the ¢-th recurrent iteration. “®” denotes matrix multiplication.

CrossInfoNet that uses hierarchical model to decompose
hand pose estimation into palm joint regression and finger
joint regression. Although CrossInfoNet adopts hierarchical
model to share the complementary information between
different tasks, it does not use the effective alignment strat-
egy. Some methods also adopt an iterative way for pose
estimation including iterative error feedback for 2D human
pose estimation [37] and point cloud registration [38].

Compared to these learning based cascaded solutions
that are mostly built on 2D depth maps and 2D alignments,
our full 3D model performs both data alignment and feature
extraction in 3D space. This allows us to extract 3D view-
independent features, and also to reduces the domain gap
issue between the input space (i.e. 3D point clouds) to the
output space (i.e. 3D joints). Fig. 2 illustrates the different
data representations and alignments in 2D and 3D.

2.5 Recurrent Models for Hand Pose Estimation

The existing recurrent models for hand pose estimation are
mainly designed for the input of image sequences. Wu et al.
[39] propose to jointly model the spatial-temporal context
for 3D hand pose estimation from depth image sequences,
in which the temporal network extracts features considering
the temporal coherence of input images via LSTM. Recently,
a recurrent hand pose model named SeqHAND [40] is pro-
posed to estimate hand pose and hand shape using sequen-
tial color images as input. Different from the above recurrent
hand pose models [39], [40] that are mainly designed for the
input of image sequences, our method designs an effective
recurrent hand pose model for the aligned 3D representation
of a single frame based on our novel pose-guided alignment
module. In other words, without the proposed pose-guided
3D alignment, it is non-trivial or not straightforward to

apply the recurrent network from sequential color images
to 3D point clouds/depth map.

3 METHOD

In this section, we introduce our recurrent model to estimate
3D hand joint locations from 3D point clouds representation
of a single depth image, which has the distinct charac-
teristics of cascaded pose-guided 3D alignments for view-
independent feature extraction. As shown in Fig. 3, we
adopt multiple recurrent iterations to estimate the 3D hand
pose. In each recurrent iteration, we adopt a cascaded multi-
stage architecture to predict hand joints by iteratively pose
regression and cascaded 3D pose-guided alignment, and
each of the cascaded stage focuses on the pose estimation
for different parts of the hand. The key idea of the cascaded
stages is to transform each part of the hand to an aligned
local coordinate system, so that we can learn to extract
view-invariant features from the input data. Each recurrent
iteration starts from a global transformation (Ag, via a
global stage of the initial iteration or A;_; via the previous
recurrent iteration) applied to the palm and then more local
ones applied to each finger. The alignment transformation
of subsequent stages is guided by the hand pose estimated
from the previous stages, thus we name the alignment
transformations as cascaded pose-guided 3D alignment. Our
recurrent module takes as input the features from the palm
stage of the previous iterations via the long short term mem-
ory (LSTM) cells, which model the dependency of features
in different iterations of refinement. The final predicted pose
is composed of the joints of the last recurrent iteration.
We first estimate the joints from their own local coordinate
systems, and then transformed to the camera coordinates.
Our full recurrent model can be trained in an end-to-end
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manner. Practically, our method can be applied to inputs
in various 3D representations, and we use the point cloud
representation for illustration.

3.1 Cascaded Pose-guided 3D Alignment

We now detail how to predict proper coordinate systems
for different hand parts, and apply the pose-guided 3D
alignment to 3D point clouds representation.

As shown in Fig. 3, the whole system contains multiple
recurrent iterations. In each recurrent iteration, we adopt
a multi-stage network (including global stage, palm stage
and finger stage) to predict hand pose by iterative pose
regression and pose-guided 3D alignments. In the global
stage, we train a network to predict the 3D hand pose
directly in the camera coordinate system, which is then
converted into homogeneous coordinates of 3D joints de-
noted as Pgiopar € R**J (J is the number of hand joints).
In the palm stage, we first transform the 3D point cloud
from the camera coordinate to the palm coordinate via a
data alignment A, inferred from P gopq:. A new hand pose
is estimated with the transformed point cloud, which is
then transformed back to the camera coordinate via A
and then converted into homogeneous coordinates of 3D
joints denoted as Ppqm € R**J. Then similarly but in a
finer scale, we build data alignment A, = {Al}> | (A}
is the alignment for the i-th finger) from P, transform
the input to each finger coordinate, predict a hand pose
Ptinger = {P’ﬁn ge,r}f:l, and transform back to the camera
coordinate via A, 1. Bach network in the finger stage only
predicts a subset of the joints in that hand part (shown in
Table 1). The way to composite the final output from these
intermediate estimation results of palm stage and finger
stage can be found in Sec. 3.1.5. Though presented with
point cloud as the input, similar pipeline can be naturally
adapted to 3D volume.

3.1.1 Hierarchical Coordinate Systems

We define the palm and finger coordinate systems to align
the data to boost the accuracy of hand pose estimation. We
use three fixed joints from the estimated hand joints of the
previous stage to define a coordinate system. Before we
elaborate on the hand coordinate systems, we illustrate the
hand skeleton definitions for the main benchmark datasets
such as NYU [20], ICVL [7], and MSRA [8] in Fig. 4.

(c) MSRA

(a) NYU (b) ICVL
Fig. 4. lllustration of the hand skeleton models for the main benchmark
datasets. (a) Hand joints in NYU hand dataset [20], which contains 14
joints. (b) Hand joints in ICVL hand dataset [7], which contains 16 joints.
(c) Hand joints in MSRA hand dataset, which contains 21 joints.
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Fig. 5. lllustration of the coordinate systems for the pose-guided align-
ments. (a)(b), (c)(d) and (e)(f) show palm and ring finger coordinate
systems of NYU, ICVL and MSRA datasets, respectively. The number
in a bracket indicates the order index to obtain a direction.

3.1.2 Palm Coordinate System

We define the palm coordinate system with three joints on
the palm from the estimated hand pose P ;554 0f the global
stage. For NYU hand skeleton, we use the joints "Wrist1’,
"Wrist2” and 'Palm’, to build the palm coordinate system
(Fig. 5(a)). The origin is set at 'Palm’. The y-axis is the
direction from "Wrist1” to "Palm’, the z-axis is perpendicular
to the plane defined by the three joints and pointing from
hand back to the front, and the z-axis is the cross product of
y-axis and z-axis.

3.1.3 Finger Coordinate System

We define each finger coordinate system using three joints
from the estimated hand pose P4y, of the palm stage. Take
the ring finger as an example, on NYU dataset, we use the
joints ‘Ring.T’, ‘Palm’, 'Ring.R’ to build the ring finger coor-
dinate SYStem Qring = {Qm'ng,Oa Qring,r; Qring,ya Qring,z}
(Fig. 5(b)). The origin £,;,4.0 is at 'Ring.R’. The y-axis
Q4 ing,y is the direction from 'Ring.T” to 'Ring.R’. The z-axis
Q4 ing, is the direction of cross product of 'Ring.T” to "Palm’
and y-axis, and the z-axis 24,4, is the cross product of
y-axis and z-axis.

Fig. 5(c)(d), (e)(f) illustrate the palm and ring finger
coordinate systems for ICVL dataset and MSRA dataset,
respectively. A complete list of hand joints to define the
coordinate systems is shown in Table 1. For each hand part,
the third joint is the origin of a coordinate system, the y-axis
of the coordinate system is the direction from the first joint
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TABLE 1
Definitions of the hand parts in the NYU and ICVL datasets for the pose-guided alignment. The palm and fingers are indexed as palm, thumb,
index, middle, ring, pinky, and wrist. The definitions of symbols 'R’, 'M’, 'P’, 'D’ and 'T’ can be found in Fig. 4.

Part NYU ICVL MSRA
Palm Wristl, Wrist2, Palm Index.R, Pinky.R, Palm Index.M, Pinky.M, Palm
Thumb | Thumb.R1,Thumb.T,Thumb.R2 | Thumb.M, Thumb.T, Thumb.R | Thumb.P, Thumb.D, Thumb.M
Index Index.T, Palm, Index.R Index.M, Index.T, Index.R Index.P, Index.D, Index.M
Middle Middle.T, Palm, Middle.R Middle.M, Middle.T, Middle.R | Middle.P, Middle.D, Middle.M
Ring Ring.T, Palm, Ring.R Ring.M, Ring.T, Ring.R Ring.P, Ring.D, Ring. M
Pinky Pinky.T, Palm, Pinky.R Pinky.M, Pinky.T, Pinky.R Pinky.P, Pinky.D, Pinky.M
to the origin, the normal of the plane passing three joints of
the hand part is z-axis, and the z-axis is the cross product of é_
y-axis and z-axis. . g £ - ]
'§ f,l'x 4
3.1.4 Alignment Transformation = ’ A\i'
For each hand part (i.e., palm and five fingers), we cal- depth sample point cloud Qé) pa"{'yfzf»x
culate a similarity transformation A € R*** to align i sl e
the coordinate system of the predicted joints in the pre- 1 i
vious stage to a canonical coordinate system 2" = = , canonical
{Qgn, Qem, Qoen Q) where the origin is set to Q6" = - PR . pont cloud
y'v 1y

0, and the axes are set to Q5" = [1,0,0]7, Q" =
[0,1,0]7, Q¢ = [0,0,1]T. The transformation A consists
of scale s, rotation R € R3*3, and translation t € R3*1.
The key idea to include scale for transformation A is to
reduce the effect of different hand scales on the hand
pose estimation network. For each local coordinate system
Q = {20,9,,9,,9.} defined in Sec. 3.1.3, we estimate a
transformation A to align the origin and axis orientations
with the canonical coordinate system £2¢“". The translation
and rotation are settot = —Qp and R = [Qm Qy, Qz]_l,
where Q,, . means the f,-normalized vector of €2, ..
The scale of A is set to s = [/|Q2,| (I is a pre-defined
hand length). Therefore, the scale s enforces the length of
transformed vector of {2, for different inputs to be equal.

3.1.5 Pose Composition

The final hand pose is a direct composition of the estimated
hand pose from the palm stage and the finger stage. We
use the location for each hand finger joints from the pose
estimated in the coordinate system defined by them (Ta-
ble 1), and get the location of the other joints from the pose
estimated in the palm stage. The pose from the global stage
is only for initialization, and it is not used in the final output.

3.2 3D Representation and Networks

Here, we detail the used 3D representation and how to feed
them into the network architecture. We use PointNet++ [31]
as the network backbone, but practically other networks can
also be used, e.g. DGCNN [41] for point clouds and 3D CNN
[25], [26] for 3D volume.

The input depth can be converted into point clouds using
the known camera intrinsic parameters, and thus the input
depth is represented as a list of points with their 3D coordi-
nates. To favor the learning, the point cloud is centered on
the center of mass (CoM), which can be calculated reliably
via traditional algorithms [13]. For the global stage and the
palm stage, we adopt the same network architecture used in

transform matrix

3D joints

Fig. 6. lllustration of the pose-guided 3D alignment for point clouds. We
use the predicted hand joints from the previous stage to get an alignment
transformation to a canonical pose. “®” denotes matrix multiplication.

[28], which is built upon PointNet++ [31]. In the finger stage,
we only collect relevant neighbor point clouds of each finger
as input. In our experiments, we keep 64 nearest points of
each finger joint within a distance threshold (set to 60mm in
our experiments). Notice that the geometric structure of fin-
ger’s local neighbor region is simpler than that of the whole
hand, thus for finger stage, we use PointNet architecture [30]
for efficiency. In order to balance the density of input point
and efficiency, we downsample input points using random
sampling and farthest point sampling (FPS) (we sample 1024
points and feed them to the networks). Finally, we transform
the location of sampled 3D points into the new coordinate
system (Fig. 6).

Details of the networks using point cloud can be found
in the supplementary document.

3.3 Recurrent Hand Pose Model

Although the above network is capable of recovering 3D
hand pose under different hand articulated motion and dif-
ferent viewpoints, we leverage a recurrent hand pose model
to generate recurrent pose-aware features that is effective to
further improve the hand pose estimation performance.
Fig. 3 illustrates our recurrent hand pose refinement
network (Hereafter, named our full model). For the initial
iteration, we use a global stage to get the initial hand
pose Pg 4 (The subscribe g means “global stage”) and get
the transformation Ag 4 to align the input point cloud to
a canonical palm coordinate system, and perform a palm
stage and a finger stage to composite the hand pose Py and



SUBMISSION TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

get the alignment transformation Aj to a canonical palm
coordinate system. For the ¢-th recurrent iterations, we align
the input point cloud to a canonical palm coordinate system
with a transformation A;_; determined with an estimated
hand pose of the ¢-1-th iteration, and extract the pose-aware
feature f; of the aligned point cloud by PointNet++ (the
feature before the last multi-layer perception (MLP)), and
add LSTM module between features of the neighboring
recurrent iterations to learn higher-order dependencies. For-
mally,

(Ct,ht) = LSTM(thl,htfl,ft) (1)

where the memory cell c; and the hidden state h; are the
functions of previous c;_;, h;_; and the pose-aware feature
f; extracted by PointNet++ for the ¢-th iteration.

After we obtain the hidden state h;, we use two MLP lay-
ers to regress the hand pose Py 1, at the palm stage. Then,
we use Py jqim to get the transformations A, = {A} }7_,
to align each finger coordinate system, perform the hand
pose estimation of the finger stage, and composite the hand
pose P and get the alignment transformation A;. Similar to
Sec. 3.1.5, the final hand pose is composed by the estimated
hand pose from the palm stage and the finger stage of the
last recurrent iteration.

In hand gesture related applications, depth sequences
are often used as input rather than single depth (e.g. NYU
dataset [20]), and thus temporal priors of hand pose se-
quences can be exploited to improve the robustness of hand
pose tracking. Our method can be easily integrated in a
tracking framework, which we refer as hand pose tracking
strategy. In particular, for the first frame, we use the network
structure in Fig. 3. For the rest of the sequence, we rely on
the estimated hand pose from the previous frame to replace
the transformation Ay 4 via the global stage in Fig. 3.

3.4 Loss Function

As shown in Fig. 3, our model adopts 1" recurrent iterations,
it has a global stage, and each recurrent iteration contains
palm stage and 5 finger stages. So, our total loss function
contains loss function of the global stage Lgiopqi, 7'+ 1 loss
functions of palm stage, i.e. L} ;. (t = 0, ..., T, and T'+1 loss
functions of the finger stage for each finger, i.e. L?m gerill =
1,..,5t=0,..,T).
The total loss function can be defined as follows:

T T 5
L= Lglobal + Z )‘PL;alm + Z Z )‘fL?inger,i (2)

t=0 t=0 =1

where Lgopq; is set to be the ¢ distance between the pre-
dicted joints of the global stage and the ground truth ones,
and LZ uim 18 set to be the ¢, distance between the predicted
joints of the palm stage at stage ¢ and the ground truth
joints. Similarly, Lspmgem is set to the ¢ distance between
the corresponding predicted joints in the i-th finger stage
and the ground truth. In our experiments, we set the loss
weights A\, and Af to 1.

3.5

Next, we describe the implementation details of our
method.

Implementation Details

3.5.1 Data Augmentation

Hand pose datasets are usually collected with a small
number of subjects, e.g. two users for NYU hand pose
dataset [20], and thus fail to include hands with different
configurations, e.g. bone length, hand shape. To overcome
these limitations, we adopt a standard data augmentation
strategy as [23], which shows improvements for the final
performance. Instead of augmenting the dataset once as pre-
processing step [26], we conduct an online augmentation
during the training phase. We perform data augmentation
by applying 3D rotation and scaling on the ground truth
pose and the point cloud from the input depth.

We perform in-plane rotations around z-axis of the cam-
era’s coordinate system, and also out-plane rotation around
x,y axis of the camera’s coordinate system. We select the
in-plane rotation angle (around z axis) uniformly from the
interval [0, 360] degrees, and choose the out-plane rotation
(around x,y axis) uniformly from the interval [—30, 30]
degrees. We scale the point clouds independently along
x,y, 2z axes of the camera’s coordinate system with scaling
factors chosen randomly from [1/1.2,1.2].

3.5.2 Training Schema

We follow Oberweger et al. [13] to crop the hand regions and
preprocess the raw depth, which is used for training and
testing of all models. We train our models on a computer
with Intel CPU i7 4790K 4.00GHz, 32GB of RAM and an
Nvidia GeForce Titan X GPU. Our model is implemented
with Tensorflow framework. During training, the batch size
and weight decay are set to be 64 and 0.0005, respectively.
The training epochs are set to 20, the initial learning rate
is set to be 0.001, and then we reduce learning rate by half
when loss stops decreasing for five epochs. Different recur-
rent iterations share the network parameters, and different
fingers also share the network parameters.

4 EXPERIMENTS

In this section, we first compare our hand pose model
with SoTA methods on three main datasets with different
skeleton structures and joint numbers, and then conduct
ablation study on the impact of pose-guided 3D alignment
and the impact of recurrent hand pose refinement.

4.1 Datasets and Evaluation Metrics

We evaluate our method on widely-used NYU dataset [20],
MSRA dataset [8] and ICVL dataset [7].

NYU Hand Pose dataset (NYU dataset) contains 72,757
frames for training and 8,252 frames for testing. For each
frame, depth images of three views (front and two side
views) are provided. NYU dataset provides 36 hand joints’
3D locations, but we follow the protocol in [20] where only
a subset of 14 hand joints are used for evaluations.

MSRA Hand Pose dataset (MSRA dataset) contains nine
subjects, each subject contains 17 hand gestures, and each
hand gesture contains about 500 frames. The dataset is
annotated with 3D locations of 21 hand joints.

ICVL Hand Pose dataset (ICVL dataset) has over 22K
training depth images and two testing sequences, with each
about 800 frames.
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Fig. 7. Comparison to SoTA methods on NYU [20], MSRA [8], ICVL [7]
different error thresholds.

TABLE 2
Mean joint error comparison of our method with SoTA methods on
NYU, MSRA and ICVL datasets. Ours: our model with 4 LSTM
modules, Ours(w/o LSTM): our model without recurrent LSTM modules,
Ours(+video): Our full model with hand pose tracking strategy. “*”
means that the annotations for MSRA dataset for V2V-PoseNet are
different from the other work, which can be found in [43].

Method NYU | MSRA | ICVL
3DCNN [26] 14.113 9.584 -
DenseReg [11] 10.214 | 7.234 7.239
Pose-REN [44] 11.81 8.65 6.79
HandPointNet [33] 10.54 8.505 6.94
Point-to-Point [28] 9.045 7.707 6.328
V2V-PoseNet [27] 8.419 7.59* 6.28
CrossInfoNet [36] 10.08 7.86 6.73
A2] [12] 8.61 - 6.46
FeatureMapping [24] | 7.441 - -
Ours(w/o LSTM) 7.693 7.354 6.407
Ours 6.847 7.007 6.050
Ours(+Video) 6.574 6.988 6.022

Evaluation Metrics. We evaluate the hand joint estima-
tion performance using standard metrics as proposed in
[7], which are widely used in many hand pose estimation
work [8] [13] [42], including the mean joint errors, Area
Under Curve (AUC) [9] and the percentage of test examples
that have all predicted joint errors within a given distance
threshold from the ground truth. Since the MSRA dataset
does not contain the splits of the training and testing sets, we
follow HandPointNet [33] to evaluate hand pose accuracy
on the MSRA dataset using leave-one-subject-out cross-
validation protocol and report the average metrics.

datasets. We show percentage of frames in the testing examples under

4.2 Comparison to State-of-the-art Methods

We compare our method on NYU, MSRA and ICVL datasets
with the SoTA methods, including the methods using 3D
volume representation such as 3DCNN [26] and V2V-
PoseNet [27], the methods using point clouds representation
such as HandPointNet [33] and Point-to-Point [28], and the
methods using depth image such as DenseReg [11], Pose-
REN [44], CrossInfoNet [36], A2] [12] and FeatureMapping
[24].

The evaluation results on NYU dataset can be found in
Fig. 7 (a), Fig. 8 (a) and Table 2. In the comparison to [27],
[28], [11] and [26], we train our network with single view
data of NYU, and the mean joint error is 6.847mm (see
“Ours” in Table 2). Our method outperforms all the other
methods on the mean joint error. Our method outperforms
all the other methods over all the error thresholds for the
percentage of good frames. Specifically, the AUC of the
percentage of good frames within the error threshold of
80mm for our method is about 4.7, 4.1, 5.1, and 8 percentage
points higher than those of V2V-PoseNet [27], A2] [12],
Point-to-Point [28], and HandPointNet [33], respectively.

The evaluation results on MSRA dataset can be found in
Fig. 7(b), Fig. 8(b) and Table 2. From Fig. 8(b) and Table 2,
we can see that ours is still significantly better than the SoTA
methods. As shown in Fig. 7(b), we observe that the AUC of
the percentage of of good frames for our method is higher
than most of the methods, and is comparable to DenseReg
[11] (Especially, our method performs better than DenseReg
at low joint error threshold). As noted in [45] and [33], part
of 3D hand joint annotations in MSRA dataset are labeled
with significant errors and thus the evaluation on MSRA

80
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Fig. 8. Comparison to SoTA methods on NYU [20], MSRA [8], ICVL [7] datasets

. We show mean joint errors for all the test examples. The palm and

fingers are indexed as palm, thumb, index, middle, ring, pinky, wrist. The definitions of joint symbols 'R’, 'M’, 'P’, 'D’ and 'T’ can be found in Fig. 4.
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Fig. 9. Influence of stages on NYU, MSRA and ICVL dataset.

dataset may be less meaningful. Since the annotations for
MSRA dataset for V2V-PoseNet are slightly different from
the other work [43], we do not show the results by V2V-
PoseNet in Fig. 7(b) and Fig. 8(b) for fair comparison.

The evaluation results on ICVL dataset can be found in
Fig. 8(c), Fig. 7(c) and Table 2. Our method achieves the best
performance of the percentage of good frames within the
error threshold of 80mm, which outperforms all the SoTA
methods. The mean joint error of our method is 0.230mm —
1.189mm lower than those of other methods.

4.3

In order to verify whether the proposed pose-guided 3D
alignment can reduce the variance of the input space and
improve the hand pose estimation performance, we use
our pipeline without the recurrent hand pose refinement to
compare the hand pose estimation on NYU dataset with
and without pose-guided 3D alignment, influence of scale

Impact of Pose-guided 3D Alignment
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We show mean joint errors for all the test examples.

in the alignment, the other types of alignments, the perfor-
mance with different kinds of feature extraction (2D/3D)
and alignment (2D/3D), and performance of different 3D
representations using 3D alignment. Moreover, we conduct
visualization analysis of features learned with and without
alignment using t-distributed Stochastic Neighbour Embed-
ding (t-SNE) [46]. In this study, we train our model on
frames of three views of NYU dataset.

Is 3D alignment important? Fig. 9 shows the performance
comparison as the number of stages increases. The palm
stage has the same network as the global stage, and the
results of the palm stage do not composite the results in the
global stage, but with the palm alignment the mean joint
errors drop by 6.5mm, 4.6mm and 4.0mm on NYU, ICVL
and MSRA datasets, which verifies that the 3D alignment
does improve the hand pose performance. The finger stage
model has a better performance than the palm stage model,
thus more stages are also effective to achieve better hand
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Fig. 11. Visualization of features before the first MLP layer using t-SNE.
(a) Feature of the input of global stage. (b) Feature from palm stage.
Each point represents a sample, and its color indicates its viewpoint.

pose estimation performance. Even when the error of global
stage is large, our method managed to achieve excellent pre-
dictions with palm and finger stages, which shows that our
method is robust against the potential inaccurate predictions
of the previous stage.

We also provide the error lower bound when ground
truth alignments are used. These results demonstrate the
gain in performance when a perfect alignment module is
designed. The mean joint errors with the ground truth
alignments are shown in Table 3. The mean joint errors using
point cloud (with scale) are 5.99mm and 3.34mm for palm
stage and finger stage. We can notice that the mean joint
errors for palm stage and finger stage with the estimated
alignments are only 1.77mm and 3.49mm worse than the one
with perfect alignment.. Therefore, we see that the proposed
alignment is effective although the alignment parameters
are estimated with the predicted pose.

TABLE 3
Error lower bound (in mm) of our model on NYU dataset.

stage point cloud
Palm Stage without scale 7.29
with scale 5.99
Finger Stage without scale 5.30
& & with scale 334

Feature visualization with alignment. We further show
visualizations of the features learned with and without

alignment using t-SNE [46]. NYU dataset consists of images
from three camera viewpoints, and we compare the features
before the first MLP layer for the NYU testing images from
three viewpoints (500 randomly sampled images for each
viewpoint). Fig. 11 shows the extracted features of the input
of global stage and palm stage using t-SNE. Each point
represents a sample projected from a 1024-dimensional vec-
tor to 2D. We observe that the features of the three views
before alignment are obviously separated, but the gap for
the features after alignment is clearly reduced. Therefore,
the 3D alignment helps to extract view-invariant features.

Influence of scale in 3D alignment. We evaluate the effect of
scale in the 3D alignment for hand pose estimation. Table 3
compares the error lower bound of our model with and
without scale. We observe that using scale in the alignment
the mean joint errors in palm stage and finger stage drop
1.3mm, 1.96mm. We also compare the mean joint error on
NYU dataset with and without estimated scale, and the
estimated scale helps to reduce the mean joint error by
0.25mm. Therefore, the scale in 3D alignment is important
to improve the hand pose estimation accuracy.

Comparison to 2D alignment in [10]. Our method is related
to the spatial attention network based hierarchical hybrid
method [10], which conducts alignment in 2D. Fig. 10 shows
the performance of our method and 2D alignment [10]. For
fair comparison, we follow the same evaluation protocol
as [10] using the error of the subset of 11 joint locations
for evaluation. We can observe that our method performs
consistently better than [10]. For example, the proportion of
joints within error threshold 10mm of our method is about
45%, 18% higher than those of the method in [10] on NYU
and ICVL, respectively.

Our alignment vs. PCA or T-net alignment. To investigate
whether our method learns better alignment and view in-
variant feature, we compare the 2D t-SNE embedding of
3D hand joints after the 1st alignment (i.e. palm stage) with
our alignment, the popular alignment approaches such as
learning-based alignment T-net in [30], [31] and PCA in [28]
in Fig. 12. Each point represents a 2D embedding of a 3D
hand joint, and each color represents the spatial distribution
of a specific hand joint. We observe that the intra-joint
distance with the network using our alignment is smaller
than those without alignment or with T-net and PCA align-
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ments, and the different joints are more separated than those
without alignment or with T-net and PCA alignments. In
Table 4, we compare the mean joint error of our pose-guided
alignment to PCA and T-net under our palm stage network.
We can see that our alignment is significantly better than
the PCA alignment used in [28] and the T-net alignment
used in [30], [31], which shows the pose-guided alignment
is important for good performance.
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Fig. 12. 2D t-SNE embedding of 3D hand joints after the 1st alignment
(i.e. palm stage). Each point represents a 2D embedding of a 3D joint.

TABLE 4
Comparison of mean joint errors (in mm) in the palm stage using our
pose-guided alignment, PCA and T-net alignments.

PCA
12.17

Ours
8.75

T-net
15.71

Dataset
NYU

Is 3D feature extraction important? We compare the per-
formance with different kinds of feature extraction (2D/3D)
and alignment (2D/3D) (see Fig. 2). We adopt the same
architecture as that of 3D feature + 3D alignment using
point cloud. The transformation only consists of rotation
and translation. Details of other kinds of feature extraction
and alignment are shown in the supplementary document.

Table 5 shows the performance comparison with dif-
ferent feature extraction and alignment. We observe that
the mean joint error with 3D feature extraction and 3D
alignment outperforms 2D feature+2D alignment, 2D fea-
ture+3D alignment, 3D feature+2D alignment by 2.87mm,
0.98mm and 2.37mm, respectively. Therefore, 3D feature
extraction and 3D alignment are both effective for hand pose
estimation.

TABLE 5
Comparison of mean joint errors (in mm) with different kinds of feature
extraction (feat.) and alignment (align.).

feat. + align. | 2D+2D | 2D+3D | 3D+2D | 3D+3D

Global Stage 15.22 15.32 15.41 15.27

Palm Stage 11.00 10.23 1091 8.75

Finger Stage 10.68 8.78 10.19 7.80
4.4 Impact of Recurrent Hand Pose Refinement

In this section, we investigate whether the recurrent hand
pose refinement can further enhance hand pose estimation
performance, we conduct hand pose comparison study
mainly on NYU dataset to verify our model design. More
specifically, we analyze two issues, the effect of the stages
of LSTM modules, and the performance of our method with
LSTM modules for hand pose tracking.

Effect of the iterations of LSTM modules. Table 6 shows
the performance under different numbers of LSTM mod-
ules. In this experiment, we train our model on frames
of single view of NYU dataset. We observe that the mean
joint error decreases as the iteration of the LSTM modules
increases. Although our method does not use additional
dataset for pretraining as [24], our method can achieve the
SoTA performance by [24] at the first iteration of LSTM, and
gains 0.74mm to [24] at the third iteration of LSTM (see
Table 2). Moreover, as shown in Table 2, our full model
performs better than our model without recurrent LSTM
modules. Therefore, our recurrent module is effective to
improve hand pose estimation performance.

Performance of our method with hand pose tracking
strategy. Our method can be easily integrated in a tracking
framework. Table 6 also shows the performance of our
method with the proposed hand pose tracking strategy (see
NYU (Video)). We observe that the results with hand pose
tracking on NYU dataset are better than those with single-
frame hand pose estimation. Moreover, as shown in Ta-
ble 2, the hand pose tracking strategy (see “Ours(+video)”)
can further enhance the hand pose estimation performance
of our method. Thus, our hand pose tracking strategy is
helpful to enhance hand pose estimation performance on
temporal sequences.

TABLE 6
Comparison of mean joint error (in mm) with different recurrent
iterations 7' of LSTM module on NYU dataset. “NYU(Video)” means the
results using our hand pose tracking strategy.

T 0 1 2 3 4
NYU 7.693 | 6926 | 6917 | 6.706 | 6.847
NYU(Video) | 6.797 | 6577 | 6.509 | 6.493 | 6.574
4.5 Runtime

The network inference runtime of our method without
LSTM is 17ms in average with a Nvidia Titan X GPU. Thus,
our method using point cloud runs in real-time at over
58fps. Table 7 shows network inference fps with different
recurrent iterations of LSTM module. In practice, the num-
ber of recurrent iterations can be used as a hyper-parameter
to balance the accuracy and runtime.

TABLE 7
Inference fps with different recurrent iterations 7" of LSTM module.

T 0 1 2 3 4
fps | 58.66 | 40.99 | 31.81 | 25.15 | 21.44

4.6 Qualitative results

In this section, we provide qualitative results for NYU, ICVL
and MSRA datasets.

Fig. 13 shows qualitative results of the different stages
in our pipeline on NYU dataset. The estimated hand joints
become more accurate from global stage to palm stage, and
they are further improved after finger stage. For example, as
shown in the first column and sixth column of Fig. 13, our
stage-wise pipeline consistently improves the joint locations
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Fig. 13. Qualitative results of different stages on NYU dataset. We show hand pose estimation results of global stage, palm stage and finger stage.
As shown in the first column and sixth column, our stage-wise pipeline consistently improves the joint locations of the middle and index fingers.
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Fig. 14. Qualitative results for NYU, ICVL and MSRA datasets. We compare our method with other methods (in the 1st column and 2nd column for
each dataset). The ground truth hand joint locations are presented in the last column for each dataset. We show hand joint locations and bones
with the depth image. Different hand joints and bones are visualized using different colors.

of the middle and index fingers. Fig. 14(a) shows the com-
parison results with the SOTA methods on NYU dataset. It
can be clearly seen that our method has better performance
than Point-to-Point [28] and V2V-PoseNet [27]. For example,
as shown in the first row of Fig. 14(a), all the joints with
our method are close to the ground truth, however, the
joints in the index, ring, pinky fingers by [28] have large
displacement to the ground truth, and the joints of all the
fingers by [27] are not correctly located.

Fig. 14(b) shows the comparison results with other meth-
ods on ICVL dataset. Our method outperforms Point-to-
Point [28] and Pose-REN [44]. For example, as shown in the
second row, the joint locations of the middle fingers using
our method are better than those generated by [28], [44].

Fig. 14(c) shows the comparison results with other meth-
ods on MSRA dataset. We can see that our method is better
than DenseReg [11] and Pose-REN [44]. For example, as
shown in the third row, all the joints with our method are

closer to the ground truth.

We also conduct experiments with other 3D networks
such as DGCNN [41] and 3D CNN [25], [26] as the back-
bones in our method, and the experiments show that our
recurrent network architecture based on cascaded pose-
guided 3D alignments can still improve the performance
over baselines. The evaluation on these backbones and more
results can be found in the supplementary document.

5 CONCLUSION

We presented a recurrent hand pose model using a cascaded
pose-guided 3D alignment that operates directly on 3D
point clouds. Our approach encodes depth image as 3D
representations such as point clouds. We propose a new cas-
caded 3D pose-guided alignment strategy in a coarse-to-fine
fashion to extract view-independent features and facilitate
the pose estimation of different hand parts. Specifically, our
model consists of three stages, which estimate 3D hand pose
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in camera, palm, and finger coordinate systems. Our method
produces more intuitive and geometrically reasonable input
that reduces the issue due to the different hand viewpoints
and facilitates the hand pose estimation. Benefiting from our
pose-guided 3D alignment, we also design a new recurrent
hand pose model to get more effective recurrent pose-aware
features by modeling the dependencies among sequential
features for 3D hand pose estimation, and then further en-
hance the performance of our method. Our method achieves
the SoTA performance on main benchmark datasets with
different skeleton structures and joint numbers.

Although promising performance has been achieved,
there are still some issues to be addressed in future work.
For example, in the finger stage, if the relevant neighbor
point clouds of a finger is very sparse, it will bring chal-
lenges to extract effective spatial features for the finger
stage network. In addition, due to heavy occlusions, our
method may not achieve high-quality hand pose estimation
under hand-object interaction scenarios. We will extend the
framework for these challenging scenarios in future.
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